Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Anal Methods ; 14(47): 4922-4930, 2022 Dec 08.
Article in English | MEDLINE | ID: covidwho-2133671

ABSTRACT

The increased spread of COVID-19 caused by SARS-CoV-2 has made it necessary to develop more efficient, fast, accurate, specific, sensitive and easy-to-use detection platforms to overcome the disadvantages of gold standard methods (RT-qPCR). Here an approach was developed for the detection of the SARS-CoV-2 virus using the loop-mediated isothermal amplification (LAMP) technique for SARS-CoV-2 RNA target amplification in samples of nasopharyngeal swabs. The discrimination between positive and negative SARS-CoV-2 samples was achieved by using fluorescence spectra generated by the excitation of the LAMP's DNA intercalator dye at λ497 nm in a fluorescence spectrophotometer and chemometric tools. Exploratory analysis of the 83 sample spectra using principal component analysis (PCA) indicated a trend in differentiation between positive and negative samples resulting from the peak emission of the fluorescent dye. The classification was performed by partial least squares discriminant analysis (PLS-DA) achieving a sensitivity, a specificity and an accuracy of 100%, 95% and 89%, respectively for the discrimination between negative and positive samples from 1.58 to 0.25 ng L-1 after LAMP amplification. Therefore, this study indicates that the use of the LAMP technique in fluorescence spectroscopy may offer a fast (<1 hour), sensitive and low-cost method.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121883, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2031671

ABSTRACT

Alternative routes such as virus transmission or cross-contamination by food have been suggested, due to reported cases of SARS-CoV-2 in frozen chicken wings and fish or seafood. Delay in routine testing due to the dependence on the PCR technique as the standard method leads to greater virus dissemination. Therefore, alternative detection methods such as FTIR spectroscopy emerge as an option. Here, we demonstrate a fast (3 min), simple and reagent-free methodology using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy for discrimination of food (chicken, beef and fish) contaminated with the SARS-CoV-2 virus. From the IR spectra of the samples, the "bio-fingerprint" (800 - 1900 cm-1) was selected to investigate the distinctions caused by the virus contamination. Exploratory analysis of the spectra, using Principal Component of Analysis (PCA), indicated the differentiation in the data due to the presence of single bands, marked as contamination from nucleic acids including viral RNA. Furthermore, the partial least squares discriminant analysis (PLS-DA) classification model allowed for discrimination of each matrix in its pure form and its contaminated counterpart with sensitivity, specificity and accuracy of 100 %. Therefore, this study indicates that the use of ATR-FTIR can offer a fast and low cost and not require chemical reagents and with minimal sample preparation to detect the SARS-CoV-2 virus in food matrices, ensuring food safety and non-dissemination by consumers.


Subject(s)
COVID-19 , SARS-CoV-2 , Cattle , Animals , Spectroscopy, Fourier Transform Infrared/methods , Chemometrics , COVID-19/diagnosis , Discriminant Analysis , Least-Squares Analysis , Fishes
SELECTION OF CITATIONS
SEARCH DETAIL